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ABSTRACT 

Measurements for various wind speeds v of wind-blown water sur- 

face characteristics by acoustic, radar, and two optical means provide 

estimates of sea surface reflection strength. The analysis suggests 

that reflection strength decreases about as v"1 from near unity for 

wind speed less than five knots to an asymptotic value of approximately 

0.1 above 20 knots with an uncertainty of a factor of 3. 

As an aside, correlation lengths for sea surface slope and curva- 

ture are estimated by manipulation and integration of the slope spectra 

measurements. 
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On a rough surface with zero mean slope, the number N of local 

maxima or minima of elevation per unit area A is given by (Refs. 1, 2) 

dN/dA = TT
-2
 (a*/a„/)a (1) z  z 

where a3 is variance and z' and z" are first and second derivatives of 

surface elevation. Maxima and minima of a surface are, of course, 

points at which local normals and normals to the mean surface coincide. 

Suppose that instead of this, one were interested in the number density 

of points at which a ray impinging on the surface at angle <t>  from the 

tangent surface was reflected identically along the incident ray. 

The number density of such points is given by (Refs. 2, 3) 

dN/dA = TT"
2
 (a "/^')2 ex] wn 

In both Eqs. 1 and 2 the term (a ///a /) bears relationship to a corre- z  z 

lation distance on the surface. In the simplest terms, let a2 be sur- 

face elevation variance and a2/ be surface slope variance, the latter 

not very large; then, one may define a correlation length r for ele- z 

vation as 

a /r = tan a  ,  2: a  / (3) z' z      z    z 

that is 

rz = CTz'/az  • (4) 

Thus a nIQ   i  is a correlation length for surface slope and Eq. 1 sug- 
z  z 

gests there is one surface maximum or minimum every ten (s= TT
2
 ) square 

slope-correlation-lengths. 



If one be interested in the reflectance of a surface for either 

acoustic or electromagnetic waves, then in addition to the number of 

reflecting "facets" on the surface one needs to know the effective re- 

flecting area at each suitably disposed point. Now if a point on a 

surface has a suitable orientation for reflecting to a given point, 

then one expects (Ref. 3)—albeit on intuitive grounds—that the suit- 

able orientation will remain suitable over the correlation length for 

surface curvature, r //.  From Eq. 4 one expects that correlation length 

for surface curvature is given by 

r a =  a in/a » (5) z    z '   z v ' 

where a2w is the variance of the surface elevation third derivative, z 

The effective reflecting area A ,, may be taken as nr2 » if the wave- 

length of the incident radiation is very small compared to r //. 
Z 

If dN/dA is the number density of reflecting facets and nrs» is 

the effective area then on the average, the reflection strength J of 

the surface average over an area large compared to r2/ is z 

J-if CvAv>a<T^.) expKv)a] 
(6) 

where 

J a TT  (a n/a  ,o in)' o       z ' z z 

and any a =  a(v) 



When determined from experimental data, J is to be corrected for 

transmission losses and may be specified as applicable to a length 

unit squared at one length unit from the surface (Ref. 3). Usually re- 

flection will be important relative to scattering only when <t>  is near 

TT/2. 

Now there are data in the literature for reflection strengths of 

wind-blown surfaces for acoustic (Ref. 3) and electromagnetic radiation 

(Refs. 4, 5, 6, 7). There are in addition laboratory data (Ref. 8) on wind- 

blown water surface slope spectra which may be used to calculate the 

coefficient of the exponential in Eq. 6—i.e., J . Thus one may test 

the theory and intuition which led to Eq. 6. 

ACOUSTIC BASIS 

For the past 20 years and more, acoustic reverberation measure- 

ments of the sea surface have been made as a function of acoustic fre- 

quency (0.6 to 60 kHz), grazing angle 2 £ <i>  £ 90 deg, and wind speed 

0.5 £ v <.  37 knots. These have been accumulated by Martin (Ref. 3). 

Many of these measurements, especially at 60 kHz (X  a: 2.5 cm), are near 

enough to normal incidence to the sea surface that using Eq. 6, both 

a / and IT"
1
 (a3i//a   iO  «)2 may be separately found. The analysis in 

this manner of the acoustic data leads to (Ref. 3) 

and 

d%i  =  0.011 +   0.0005  v (7) 

TT"1   (a2„/o-   /a mf  =  0.83 v-0'738 (8) z       z    z 



each for wind speed v in knots between 2 and 20. If v > 20 knots, 

J takes on a constant value equal approximately to 0.05—i.e., -13 

decibels. Although Eq. 7 appears to overestimate a2/ at low wind 

speeds in comparison with the o2, data of Cox and Munk for clean water 
z 

surface, it is not very different at v ^ 10 knots. The data of Cox 

and Munk (Ref. 9) are represented by 

a2/ = 0.0015 + 0.00132 v (9) z 

with wind speed v again in knots. Equation 9 averages down- and cross- 

wind components of variance.  Since the Cox and Munk data are by far 

more accurate and extensive, a2,  from Eq. 9 may be used to remove one 

unknown in the analysis of the acoustic data.  In this event, a re- 

evaluation leads to the data of Table 1.  For comparison of various 

measurement means, the following logarithmic least-squares fit ("llsf" ) 

is calculated. 

^acoustic = 10 v_1-68 <10> 

again with a constant value of 0.05 for v ^> 20 knots. A plot of the 

acoustic data of Table 1 and of Eq. 10 is shown in Fig. 1. 

RADAR BASIS 

For the past ten years and more, radar measurements of the normal 

incidence radar reflectance of ocean surface have been made.  Data 

which best suit the present needs are those of Hoover and Urick (Ref. 

4), Grant and Yaplee (Ref. 5), and Campbell (Ref. 6). These data taken 

for various conditions of radar beamwidth, radar frequency are shown 



in Table 2 with wavelength of radiation, 0.86, 1.25, 3.0, 3.2, 3.4 cm, 

indicated.  An "llsf" of the data, for comparison, yields 

^Jo)radar= 3-4v"0'51 • 

with v in knots. A plot of the radar data of Table 2 and of Eq. 11 is 

shown in Fig. 2. 

LASER BASIS 

There have been few optical measurements of water surface reflec- 

tion strength versus wind speed. One such by Kirk (Ref. 7) accomplished 

with an argon laser at 0.4880 microns gives values shown in Table 3 and 

plotted in Fig. 3. The data of Kirk show the same order of magnitude 

for reflection strength and the same trend and leveling out near v = 20 

knots, and are represented by an "llsf" given as 

(J ).    = 21 v"1'58 (12) v o'laser v 

SLOPE SPECTRUM BASIS 

Finally, there are available the laboratory measurements of one- 

dimensional slope spectra versus wind speed of Cox (Ref. 8) which may 

be modified to estimate the functional rr"1 (a2»/o  ,a  «)2.  Cox's data z  z z 

are given as f S(f,v) where f is wave slope frequency and S is the 

one-dimensional slope spectrum as a function of both f and v, the wind 

speed.  Immediately one may calculate a2/ from Cox's data, shown in z 

Table 4, as 

S(f) df 

(13) 

f S(f) d(lnf) 

because the data are given for A(log f) = 0.1. 

6 



However, to obtain a * and a2„,  some modification of the variable z     z 

f S(f) must be made.  Let E /(f) s  S(f) where the subscript z' indi- 

cates a power spectrum of slope as a function of frequency. 

As it is true (Ref. 10), for wave number k = 2-rrf/c where c is the 

wave phase velocity, that 

a2 =/E(k) dk (14) 

and that 

and 

Ez„(k) = k
3 Ez/(k) (15) 

E „,(k) = k* E ,(k) (16) 
z z 

in order to proceed it is necessary to make the slope spectrum [f S(f)] 

a function of k as 

E ,(k) = f-1 [f S(f)] df/dk (17) z 

where df/dk comes from the dispersion relation 

f2 = (2n)"2 (gk + ok?/p) . (18) 

In Eq. 18, g is acceleration due to gravity and a and p are the surface 

tension and density of the wavy fluid—water in the present case. 

The operations made possible by Eqs. 14 through 18 have been 

carried out for the four wind speeds of Cox's data (v = 3.18, 6.08, 

9.20, 12.02 m/sec) and the resulting values of TT"
1
 (a2„/a  ,a  «/)2 are 

shown in Table 2 at wind speeds corrected from laboratory scale to at- 

sea scale (Ref. 3) (v = 4.3, 8.1, 13.5, 19.0 knots).  The data of 



Table 5 which have an "llsf" given by 

^spectra = °'51 v"°-86 <19> 

are plotted together with this equation in Fig. 4. 

Appendix A discusses the variation with wind speed of the in- 

dividual variances and the surface correlation lengths implied by 

these. 

CONCLUSION 

In what has gone before, acoustic, radar, laser and slope spectra 

data have been interpreted to normal incidence reflection strengths of 

wind-blown water surfaces and for each of these data sources, a loga- 

rithmic least-squares fit has been made.  These "llsf" relations are 

given by Eqs. 10, 11, 12, and 19.  But as these equations represent 

the data sources they might be used to calculate "data" so as to ob- 

tain an average or consensus of the sources. Thus, using these four 

equations, a reflection strength, the logarithmic average of the four, 

has been calculated for v = 2.5 to 20 knots in steps of 2.5 knots and 

this used as a data basis for averaging. The consensus "llsf" is 

given by 

(J ) = 4.4 v"1*16 (20) v o'consensus v ' 

with v in knots, and this is shown in Fig. 5. 

Inasmuch as surface reflectance of a smooth sea surface would 

ideally be unity, it appears that for v «* 2. 5 knots, surface re- 

flection strength approaches unity, that for v ^ 20 knots, surface 

8 



reflection strength attains an asymptotic value of about 0.1, and that 

between 2.5 and 20 knots wind speed, surface reflection strength de- 

creases approximately as v"1 with an uncertainty of a factor of three 

or so. 

The foregoing suggests that some additional interpretation is 

warranted. In its most elaborate form, (aan/a  i<z  «/)a may be written 
2     Z   Z 

in terms of E (k) using the form of Eqs. 15 and 16 as 
z 

Is [/k4E
z(k)dk]

! 

/*k2Ez(k)dk /k
6Ez„,(k)dk 

(CTz"AVV/)5 = /. ,   ——~  (21) 

The form of Eq. 21 is familiar from turbulence theory (Ref. 11) in 

which potential energy represented by the elevation stochastic variable 

z is replaced by the kinetic energy turbulent velocity variable, u', 

say.  In the case of fluid turbulent velocities, Batchelor (Ref. 11) 

shows that the right-hand side of Eq. 20 tends to a limit as the main 

stream velocity v gets large as with surface roughness although there 

is no low velocity asymptote evidenced. This congruence is hardly 

surprising however for certainly the turbulent air stream over the 

rough sea surface is engaging in an energy exchange. 

Rather than finishing with Eq. 20 as a description of sea surface 

reflection strength, one is tempted because of the stochastic—possibly 

Gaussian—character of air surface energy interchange and the high and 

low wind speed asymptotes to replace Eq. 20 with an error integral fit 

with variable In v.  The result of a first effort at this is given for 



both JQ(v) and N0(v) in decibels—i.e., with N (v) = 10 log JQ(v) 

by 

N0(v) = (A//2ro) / exp{-i[(x'-n)/a]a}dx'       (22) 
— 00 

which is the canonical form, with x = lnv and A = -10, \x = In (9.5 

knots) and a = In (1.95 knots). 

Both Eqs. 20 and 22 are shown in Fig. 6. Equation 22 suggests 

that surface roughness—as evidenced by surface elevation derivatives-- 

generates slowly until v ^  5 knots, becomes very rough as v increases 

from 5 to 20 knots, and adds little roughness beyond 20 knots.  Not- 

withstanding the validity of the exponential integral interpretation, 

the foregoing description is consonant with experiments and in accord 

with observation and intuition. 

10 
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TABLE 1.  ACOUSTICALLY MEASURED WATER SURFACE 
REFLECTION STRENGTH VERSUS WIND SPEED 

Wind Speed, v, Knots       Reflection Strength, J (v) 

2 2 

3.5 0.63 

4.5 1.6 

5 0.63 

5.5 1 

6.5 0.63 

8 0.40 

8.5 0.25 

10 0.13 

11.5 0.2 

12 0.13 

15 0.063 

16 0.0003 

21 0.2 
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TABLE 2.  RADAR MEASURED WATER SURFACE REFLECTION 
STRENGTH VERSUS WIND SPEED (REFS. 4, 5, 6) 

Wavelength, 
cm 

Wind Speed, v, knots Reflection Strength, 
J0(v) = CT/4TT 

0.86 7.5 3.5 

12.5 3.2 

17.5 2.1 

20.5 2.3 

1.25 7.5 1.6 

12.5 1.25 

17.5 1.00 

22.5 1.25 

3.0 2 8.0 

4 8.0 

9 2.0 

3.2 2.5 0.63 

7.5 0.63 

12.5 0.33 

17.5 0.13 

3.4 2.5 0.45 

7.5 0.32 

12.5 0.20 

17.5 0.08 
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TABLE 3.  LASER-MEASURED WATER SURFACE 
REFLECTION STRENGTH VERSUS 
WIND SPEED (REF. 7) 

Wind Speed, v, Knots    Reflection Strength, J (v), (-) 

0.74 

0.28 

0.21 

0.22 

9, ,3 

12, ,3 

18, .2 

19 .1 
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TABLE 4.  FREQUENCY-BIASED WIND BLOWN WATER 
SURFACE ABSOLUTE VALUES* 

[E2,  (f)] 

vlab, 
m/sec 

Frequency, cps 3.18 6.08 9.20 12.02 

0.857 6.30 E-5 1 .25 E-4 3.16 E-4 1.99 E-3 
1 .07 1 .25 E-4 2.51 E-4 1 .00 E-3 5.01 E-3 
1 .35 1 .00 E-4 3.16 E-4 1 .00 E-3 3.98 E-3 
1 .71 1 .00 E-3 1 .99 E-3 2.51 E-3 1.00 E-2 
2.15 5.01 E-5 5.01 E-4 1 .00 E-3 1.99 E-2 
2.71 5.01 E-5 3.16 E-4 7.94 E-3 1.58 E-l 
3.41 2.51 E-4 7.94 E-4 1 .00 E-l 2.51 E-l 
4.29 2.51 E-4 1 .58 E-2 2.51 E-l 1.25 E-l 
5.40 2.51 E-3 1 .00 E-l 7.94 E-2 1.00 E-l 
6.80 1 .25 E-2 1 .00 E-l 5.01 E-2 1.00 E-l 
8.57 3.98 E-2 3.98 E-2 6.30 E-2 1.25 E-l 

10.7 2.51 E-2 2.51 E-2 3.16 E-2 1.58 E-l 
13.5 1 .00 E-2 3.16 E-2 3.98 E-2 1.58 E-l 
17.1 1 .25 E-2 2.51 E-2 2.51 E-2 1.25 E-l 
21 .5 1 .99 E-2 3.16 E-2 2.51 E-2 1.00 E-l 
27.1 2.51 E-2 5.01 E-2 2.51 E-2 1.00 E-l 
34.1 2.51 E-2 5.01 E-2 2.51 E-2 1.00 E-l 
42.9 1 .58 E-2 7.94 E-2 3.16 E-2 7.94 E-2 
54.0 2.51 E-3 1 .25 E-l 3.16 E-2 1.00 E-l 
68.0 1 .00 E-3 6.30 E-2 2.51 E-2 3.98 E-2 
85.7 1 .58 E-4 3.98 E-2 2.51 E-2 3.98 E-2 

107. 2.51 E-4 1 .99 E-2 2.51 E-2 3.16 E-2 
135. 2.51 E-5 6.30 E-3 1 .58 E-2 2.51 E-2 
171 . — 1 .58 E-3 1 .00 E-2 1.58 E-2 
215. — 3.16 E-4 3.98 E-3 7.94 E-3 
271 . — — 1 .00 E-4 1 .25 E-3 3.16 E-3 
341 . — 3.16 E-5 6.30 E-4 1.99 E-3 
429. — 3.16 E-4 2.51 E-4 2.51 E-3 
540. - - - - 2.51 E-3 2.51 E-3 1.00 E-2 

(A£nf)SfE (f) 6.78 E-2 1 .87 E-l 2.07 E-l 4.61 E-2 

Values are accurate to t 0.05 in base ten logarithm. 
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TABLE 5.  WATER SURFACE REFLECTANCE PARAMETER 
VARIATION WITH LABORATORY WIND SPEED 
(BASED ON COX SLOPE SPECTRA) 

Wind Spi 2ed,   v Reflection 
IT'   <oJ. 

Strength Parameter 

m/sec knots* 

4.3 

//cV V')3 (_) 

3.18 0.16 

6.08 8.1 0.076 

9.20 13.5 0.055 

12.02 19.0 0.044 

Corrected for laboratory and at-sea scales. 
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APPENDIX A 

WIND-BLOWN WATER SURFACE VARIANCES AND 
CORRELATION LENGTHS VERSUS WIND SPEED 

The variances which lead to Table 2 and the correlation lengths 

which may be calculated from them have interest in themselves. Table 

A-l gives these individual variances as a function of the two wind 

speeds mentioned. The values of a2/ in Table 3 are several times 
z 

larger than those expected from Cox and Murik's Eq. 9 and this is con- 

jectured as due to the especially clean water surface of the laboratory 

experiment which would inhibit very little the formation of capillary 

waves hence large slope variance. Notwithstanding the slope variance 

discrepancy between laboratory and sea-going conditions and depending 

upon the wave number distribution of this discrepancy, one expects 

that the ratios of variances--as in Table 2—are less affected and that 

the trends indicated are valid.  If indeed Eq. 4 is formally suitable 

for determining correlation lengths on a wind-blown surface, then Table 

A-l may be used to find slope and curvature correlation lengths. These 

are given in Table A-2 for the four wind speeds of Cox. 

Thus for the cleanest wind-blown water surfaces, the fine scale 

roughness is of the order of millimeters; this scale is probably 

much larger for at-sea condition. 
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TABLE A-l. WATER SURFACE SLOPE, CURVATURE AND ELEVATION 
THIRD DERIVATIVE VARIANCES VERSUS LABORATORY 
WIND SPEED 

Wind Speed, v 
Slope Curvature Third Derivative 

m/sec Knots* 

4.3 

(-) 

0.044 

(cm"3 ) 

1.40 

(cm-4 ) 

3.18 97.1 

6.08 8.1 0.105 4.20 708 

9.20 13.5 0.24 11.9 3,460 

12.02 19.0 0.51 23.9 8,150 

Corrected for laboratory and at-sea scales, 
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TABLE A-2.  WATER SURFACE SLOPE AND CURVATURE CORRELATION 
LENGTHS VERSUS LABORATORY AND WIND SPEED 

Wind Speed,  v Correlation 
Slope,  z       Ci 

cm 

Lenath.  r 

m/sec Knots* 

4.3 

irvature, z 
cm 

3.18 0.17 0.12 

6.08 8.1 0.16 0.077 

9.20 13.5 0.14 0.059 

12.02 19.0 0.15 0.054 

* 
Corrected for laboratory and at-sea scales. 
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Fig. 1. Acoustics based sea surface reflection strength vs wind speed. 

Fig. 2. Radar based sea surface reflection strength vs wind speed. 

Fig. 3. Laser based sea surface reflection strength vs wind speed. 

Fig. 4. Slope spectrum based sea surface reflection strength vs wind 
speed. 

Fig. 5. Comparison of acoustic, radar, laser slope spectrum & concensus 
values of sea surface reflection strength. 

Fig. 6. Comparison of logarithmic and error integral fits to concensus 
sea surface reflection strength. 
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